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Abstract—Reinforcement learning is becoming extremely at-
tractive for robotics, cyber-physical systems, and other safety-
critical systems. However, the behavior of reinforcement learning
systems is difficult to model. Thus, there are no guarantees that
can be made about how the system will respond making it unsafe
to implement in safety-critical systems. To combat this issue,
Safe Reinforcement Learning methods and techniques are being
researched and developed. This paper reviews and analyzes four
papers with promising results from this field.

I. INTRODUCTION

Reinforcement Learning (RL) is a branch of machine learn-
ing that focuses on software agents taking action in an envi-
ronment to maximize rewards. The general idea is similar to
training a dog to do tricks by giving it treats when it performs
the desired task. Due to its generality and versatility, RL is
also studied in disciplines outside of machine learning, such
as game theory, control theory, simulation-based optimization,
multi-agent systems, and swarm intelligence. RL is so versatile
because it is a way of programming agents via reward and
punishment without needing to specify how the task is to be
achieved [1].

Reinforcement Learning and other learning-based methods
have been around since the early days of computer sci-
ence, but are rapidly gaining popularity in the control and
artificial intelligence research communities [2]. The reason
these methods are gaining so much popularity is because RL
algorithms consistently show an ability to produce optimal
results despite having poor models to work with. Because
of this, RL techniques are extremely attractive for robotics
applications, which have complex dynamics and environments
that are difficult to model. However, the behavior of these
RL systems are often difficult to interpret and predict. This is
unacceptable for safety critical systems where unpredictable
behavior could be the difference between life and death.

In order to avoid dangerous situations in safety critical
systems, Safe Reinforcement Learning was developed. Safe
Reinforcement Learning can be defined as the process of
learning policies that maximize the expectation of the return
in problems in which it is important to ensure reasonable
system performance and/or respect safety constraints during
the learning and/or deployment processes [3].

In this paper, we review four techniques developed in
the last two years for safe reinforcement learning and how
they relate to each other. Each technique focuses on safe

exploration, but uses a different method of ensuring safety.
The first two papers use runtime validation and temporal logic
specification to detect unsafe actions and change them to safe
actions before the action is processed by the environment.
The third paper uses Lyapunov functions to determine a safe
region that is updated and expanded as the learning agent
explores the safe region learning more about its environment
and the actual system dynamics. The fourth and final paper
combines aspects from the previous three papers, developing
a framework that prevents the learning agent from making
unsafe actions while using the data it collects to update its
environment and dynamics models.

II. SAFETY VIA A MONITOR

Using a monitor to ensure safe and reliable behavior is a
common technique used in real-time and control systems. A
monitor is a third party agent that observes the behavior of the
system and modifies actions when necessary. This is similar
to a situation in driving where there is a second driver in the
passenger seat who has their own set of brake pedals. This
second driver observes the driving behavior and, when they
feel unsafe, step on the brake to hopefully avoid the unsafe
situation.

Monitors can perceive and detect unsafe situations in many
ways, much like the second driver would depending on the
person. The following two methods design their monitors to
observe behaviors in different ways, but can be used with any
type of learning algorithm.

A. Safe Reinforcement Learning via Formal Methods

The paper, [4], focuses primarily on using tools from the
field of formal verification. Formal verification, the act of
proving or disproving the correctness of intended algorithms
underlying a system with respect to a certain formal specifi-
cation or property [5], provides a high degree of confidence
that a system will operate safely. However, formal verification
relies on accurate models of the system and even the best
models are incomplete. For safety-critical systems, these small
discrepancies could mean the difference between success and
catastrophic failure. Conversely, RL-based controllers perform
extremely well despite inaccurate models, but do not provide
any safety guarantees. In [4] the authors aim to get the best of
both worlds using a novel algorithm they call Justified Specula-
tive Control (JSC). JSC combines off-line formal verification,



runtime monitoring, and RL to transfer proofs of safety to
learned policies.

The method described works by determining verifiably safe
actions out of the current state and choosing one of the options
from the list of safe actions. If no verifiably safe actions
exist, the system is justified in taking a potentially unsafe,
unverified action. Actions are determined safe using a verified
runtime validation tool called ModelPlex. The algorithm for
this method is shown in Algorithm 1.

Algorithm 1 Justified Speculative Learning
Require: init, actions, environment, done,

determine safe actions
prev := curr := init
while !done(curr) do
safe actions := determine safe actions(actions)
if safe actions 6= ∅ then

action := choose(safe actions)
else
action := choose(actions)

end if
prev := curr
curr := environment(action, prev)

end while

Upon closer inspection of this method and algorithm, it
can be seen that the monitor does not work the same way
as described at the beginning of the section. It is similar,
but fundamentally very different. Instead of the monitor only
applying the breaks when necessary, this monitor design limits
the possible actions the learner can take to only visit states it
determines are safe. In the second driver analogy, this would
mean that, instead of the second driver only having an extra
set of brakes, this one has limiters that control how much the
driver can turn, accelerate, or brake at any given moment. In
the case where there are no possible safe actions, the monitor
gives complete control to the learning algorithm to determine
an action from the complete action space. When this happens,
the learning algorithm is justified in making an unsafe action,
hence the name Justified Speculative Control.

The authors validate JSC using three experiments involving
simulated Adaptive Cruise Control (ACC) of one car following
another. In the first experiment, the environment responds ac-
cording to the model. In the second experiment, they introduce
a slight perturbation to the relative position of the cars (2
units) with 5% probability. The third experiment demonstrates
the effectiveness of a modified version of their algorithm that
shows safer results when more error is introduced to the
system model. The authors use Q-learning to determine their
policies in the experiments, but note that JSC works for any
generic RL algorithm.

In order to reduce the system state space, the authors use
relative position instead of two distinct positions and limited
the controller to three actions, brake with a constant force,
accelerate with a constant force, or maintain current relative
velocity. Additionally, the model is further simplified to only

TABLE I
EXPERIMENT 1: JSC VS. CLASSICAL Q LEARNING IN A MODELED

ENVIRONMENT

Training
Steps

JSC Normal
Crash Fall Behind Steady Crash Fall Behind Steady

1,000 0 12559 289 10644 2162 42
10,000 0 12538 310 10462 2291 95

100,000 0 12375 473 10492 2284 72

TABLE II
EXPERIMENT 2: JSC VS. Q-LEARNING WITH ERROR INJECTION (.05

ERROR RATE)

Training
Steps

JSC Normal
Crash Fall Behind Steady Crash Fall Behind Steady

1,000 3 12539 306 10950 1745 153
10,000 7 12502 339 10546 2215 87

100,000 5 12359 484 10561 2242 45

contain safe initial conditions. For example, the following car
cannot start close to the lead car with a high enough relative
velocity that even if the brake was constantly applied, the result
would be a crash.

Experiment 1, JSC in an Accurately Modeled Environment:
The results from this experiment, shown in Table 1, highlight
JSC’s ability to avoid unsafe states and improve the optimality
of the controller. The non-JSC tests resulted in over 10, 000
crashes each, proving the method is unsafe. However, in all
of the tests using JSC, no crashes occurred and the number
of steady results were significantly higher than the non-JSC
counterpart. A steady result occurs when the following car
safely follows the preceding car without falling behind.

Experiment 2, JSC in an Environment that Admits Specu-
lation: The results from this experiment, shown in Table 2,
highlight JSC’s ability to avoid unsafe states and improve the
optimality of the controller even when the environment does
not respond as modeled. While the JSC method does result
in some crashes, the numbers are small; never reaching more
than 10 even in the test with 100, 000 iterations.

B. Safe Reinforcement Learning via Shielding

The authors of [6] introduce a new type of monitor that
enforces safety properties specified using temporal logic,
a form of logic used for specifying and reasoning about
propositions defined in terms of time. Their goal was to
create a control system that combines the formal correctness
guarantees provided by formal methods applied to tempo-
ral logic specification with the optimal performance, despite
incomplete knowledge, provided by reinforcement learning.
Using specifications defined with temporal logic, the authors
synthesize a reactive system they call a shield to restrict
the exploration space to only safe and recoverable states.
They implement the shield two different ways, Preemtive



Shielding and Post-Posed Shielding1, but restrict all of their
testing to Preemtive Shielding. Therefore we will only focus
on Preemtive Shielding.

The shield works the same way as the design from [4]
except, with this design, there exist no cases where there are
no safe actions. This is a direct result of how the shield is
made.

In order to make the shield, the authors use game theory
techniques to pit an abstract model of the environment against
the safety conditions in a game that is run many times through
simulation. In the game, the environment player chooses the
next observations for the modeled state space, and the system
chooses the next action. The environment player tries to force
the system into unsafe states while the system player tries to
prevent that. Through this game play a winning region, W ,
is generated. The winning region is a set of states and action
pairs that will always lead to more states inside the winning
region and never to unsafe states. The shield is then developed
as a policy that allows all actions that are guaranteed to lead
to a state in W , no matter what the next observation is. The
shield essentially removes all traces that can lead to unsafe
states. The result is, no trace allowed by the shield can lead
to an unsafe state.

This paper validates their method through the use of four
different experiments. Two involve a robot navigating a grid
world and avoiding obstacles. One experiment uses the method
to develop a control system for directing a car in an anti-
clockwise square without crashing into the walls. Another
experiment demonstrates the effect of using the method to
play the Atari game SeaquestTM. The last experiment simulates
a heated water tank where the water level is controlled by
turning on and off a valve.

In every experiment, except for the video game, the shielded
system converges sooner and never reaches an unsafe state. In
the video game experiment, the response was about the same
with and without the shielding.

C. The Issue with these Monitors

While both methods have promising results and success-
fully prevent their experimental systems from reaching unsafe
states, they have one major downside. In order for these
methods to work effectively, they require accurate models of
their environment for monitor design. In the method described
in [4], crashes occurred when uncertainty was added to the
environment and the method from [6] shows no results from
added uncertainty. In order for these methods to be used in real
systems, they must account for uncertainties and provide safety
guarantees even when the environment does not respond as
modeled. Therefore, while these methods work well in theory,

1While Post-Posed Shielding is proven to be safe in the paper, the authors
note it can train the learning agent to make unsafe decisions that rely on
the shield to make the desired safe decision so the shield must remain after
learning to ensure safety. However, Post-Posed Shielding can be used on
learning algorithms that are already in the execution phase to ensure safety
of unverified systems and the learning agent will likely not even realize the
shield is there.

they require further development before being tested in real
safety critical systems.

III. MAINTAINING SAFETY BY LEARNING THE
ENVIRONMENT

Because RL algorithms provide optimal policies only in
the long-term, intermediate policies can be unsafe, break the
system, and/or harm the system environment. This can become
even more of a problem for monitored algorithms because they
are heavily dependent on accurate models of the dynamics. In
this section, we look at a technique that works even when
the dynamics are modeled poorly because the true dynamics
are learned as the learning agent explores. Additionally, this
method guarantees safety as it learns the true dynamics of the
environment.

A. Safe Model-based Reinforcement Learning with Stability
Guarantees

In order to combat unsafe intermediate policies for poorly
modeled dynamics, the authors of [7] looked to asymptotic
stability for a solution. More specifically, they focused on
the region of attraction (ROA). The ROA is a subset of
the state space that is forward invariant, meaning that any
state trajectory that starts in the ROA, stays in the ROA
and converges to a goal state eventually. Using this, the
authors developed a novel algorithm that can optimize state ac-
tion spaces while providing high-probability safety guarantees
while demonstrating an ability to safely learn the dynamics of
a system and increase the estimated safe region of attraction
without ever leaving it.

Since the goal is to safely learn the dynamics from measure-
ments and adapt the policy for optimal performance without
encountering system failures, assumptions and restrictions are
necessary. In order to generalize learned knowledge about the
dynamics of the system at states that have not been visited,
the authors restrict the system to being Lipschitz continuous.

For a function to be Lipchitz continuous, there must exist
a real number such that, for every pair of points on the
graph of this function, the absolute value of the slope of
the line connecting them is not greater than this real number.
In order to ensure the closed-loop system remains Lipschitz
continuous, the authors also restrict the policies to the class
of Ln-Lipschitz continuous functions, ΠL. Additionally, the
system model must be statistically reliable in order to ensure
the confidence intervals built on the dynamics cover the true
function with high probability. When the system is adapting
the policy, it is not allowed to decrease the ROA and ex-
ploratory actions are not allowed to drive the system outside
of the ROA.

The general idea of how this method works is, the system
starts with a small ROA based on the estimated dynamics
of the system. The exploration of the learning algorithm is
confined to that ROA, but free to explore anywhere inside
of it. As the learning agent explores the ROA, the responses
it receives are used to redefine the Lyapunov function that
defines the ROA. As the function changes, the ROA expands



Fig. 1. Figure and following caption from [7]: We start from an initial, local policy π0 that has a small, safe region of attraction (red lines) in Fig. 1(a). The
algorithm selects safe, informative state-action pairs within Sn (top, white shaded), which can be evaluated without leaving the region of attraction V (cn)
(red lines) of the current policy πn. As we gather more data (blue crosses), the uncertainty in the model decreases (top, background) and we use a function
to update the policy so that it lies within Dn (top, red shaded) and fullls the Lyapunov decrease condition. The algorithm converges to the largest safe set in
Fig. 1(c). It improves the policy without evaluating unsafe state-action pairs and thereby without system failure.

Fig. 2. Figure and following caption from [7]: Optimization results for an inverted pendulum. Fig. 2(a) shows the initial safe set (yellow) under the policy
π0, while the green region represents the estimated region of attraction under the optimized neural network policy. It is contained within the true region of
attraction (white). Fig. 2(b) shows the improved performance of the safely learned policy over the policy for the prior model.

and provides more space for the learning agent to explore. This
continues to happen until the ROA can no longer expand safely
and the learning agent converges to an optimal policy. Thus
the learning agent is able to learn an optimal policy without
ever leaving the safe region. In other words, it maintains safety
while learning the environment. This process is best illustrated
in Figure 1, which shows how the ROA expands as the learning
agent explores.

The authors demonstrate their method through an experi-
ment with the classic inverted pendulum problem. For this they
propose to use an approximate policy update that maximizes
approximate performance while providing stability guarantees.
It proceeds by optimizing the policy first and then computing
the region of attraction for the new policy. They claim that

this does not impact safety, since data is only collected inside
the region of attraction and, should the optimization fail and
the region of attraction decrease, they can always revert to the
previous policy, which is guaranteed to be safe. They have
to use an approximate policy update because part of their
theory is intractable to solve. In doing so, they retain safety
guarantees, but sacrifice exploration guarantees. However, this
result is a more practical algorithm and the results are still
promising. The results from their experiment are shown in
Figure 2.

B. Issues with this Method

This method solves the issue of needing an accurate model
of the environment in order to guarantee safety. The method



is adaptive and flexible, learning the true dynamics of the
environment. This is a marked improvement to the previous
methods described in Section II. However, this method has
some issues of its own that prevent it from being a solution for
real life safety critical systems. When the system encounters
large outside forces, there are no guarantees it can remain
inside the safe region. As the agent is learning, there are no
guarantees for situations when the agent is forced outside of
the ROA by an outside force. Therefore, while this method
works well in theory, it requires further development before
being tested in real safety critical systems.

IV. COMBINING BOTH TECHNIQUES

Providing strong and practically useful safety guarantees for
systems navigating unstructured environments requires more
than model-based techniques, like the monitor, or data-driven
techniques, like the learning strategy from Section III, can
achieve on their own. Instead, both should be used in combina-
tion to achieve the best performance and safety guarantees. By
incorporating learning techniques with a monitor, the system
is able to ensure that it will never leave the safe region but
also adapt and change the definition of that safe region if the
environment dynamics are not accurate. In this section we look
at a framework that combines both techniques to develop their
own method that is tested in a real-world environment using
drones.

A. A General Safety Framework for Learning-Based Control
in Uncertain Robotic Systems

The authors of [2]2 combine both techniques in their frame-
work, which is based on Hamilton-Jacobi reachability methods
and can be used with any arbitrary learning algorithm. As
the system learns, they use a Bayesian mechanism to refine
the safety analysis and determine new safety constraints. The
result is a least-restrictive, safety preserving control law that
only intervenes when necessary or there is low confidence in
how the system will respond based on new observations.

The method works by implementing a monitor system based
on the estimated dynamics of the system. This monitor invokes
a safety controller whenever the system starts to leave the
safe region, or safety envelope, or confidence in the estimated
dynamics falls below certain threshold. In order to compute
the safe region, the authors use Hamilton-Jacobi methods
which calculate the worst-case scenario given the current
estimated system dynamics. While the system is learning, they
also implement an online Bayesian mechanism that refines
the safety analysis as more information is learned about the
environment. This reduces the conservativeness of the system
while maintaining safe operation and strengthening the safety
guarantees. Thus they ensure the system cannot leave the
safety envelope while exploring and redefining the safety
envelope.

Experiment 1, From Fall to Flight: The drone is initialized
with a fully untrained policy, which will cause it to enter

2Videos of the experiments and an additional explanation of the method
can be found here: https://people.eecs.berkeley.edu/∼jfisac/safelearning

Fig. 3. Figure and following caption from [2]: Vehicle altitude and reference
trajectory over time. Initial feedback gains are set to zero. When the learning
controller (green) lets the vehicle drop, the safety control (red) takes over
preventing a collision. Within a few seconds, the learned feedback gains allow
rough trajectory tracking and are subsequently tuned as the vehicle attempts
to minimize error.

Fig. 4. Figure and following caption from [2]: Vehicle altitude and reference
trajectory over time. After flying with an initial conservative model, the vehicle
computes a first Gaussian process model of the disturbance with only a few
data points, resulting in an insufficiently accurate bound. The safety policy
detects the low confidence and refuses to follow the reference to low altitudes.
Once a more accurate disturbance bound is computed, tracking is resumed,
with a less restrictive safe set than the original one.

free fall as soon as it starts. This action will force the safety
controller to take over and keep the drone within the safety
envelope.

When the experiment starts, the drone plummets towards
the ground because of the zeroed out feature weights for
the controller. However, the safety controller starts before the
drone is able to strike the ground. After that, the drone moves
up and down very slightly as the control switches between
the learning agent and the safety controller. As the switching
occurs, the learning agent adapts its policy until sufficient
feature weights are employed that allow the drone to follow
the set trajectory. The results are shown in 3.

Experiment 2, When in Doubt: In this experiment the
drone is initialized with ”hand-tuned” feature weights for the
controller. The goal of this experiment is to generate new
uncertainty bounds during the learning process. The results
are shown in 4.



Fig. 5. Figure and following caption from [2]: Vehicle altitude and reference
trajectory over time, shown with and without online model validation. After
the fan is turned on, the vehicle checking local model reliability detects the
inconsistency and overrides the learning controller, avoiding the region with
unmodeled dynamics; the vehicle without model validation enters this region
and collides with the ground multiple times. The behavior is repeated when
the reference trajectory enters the perturbed region a second time.

When the experiment starts, the drone operates using the
safety controller frequently. At t = 10s, the recorded distur-
bance values are used to compute a new disturbance bound,
changing the safety guarantees and policy which are substi-
tuted into the drone’s controls at approximately t = 12s. The
new bounds are not received well as the drone repeatedly ap-
plies the safe control policy due to uncertainty. At t = 20s, the
process is repeated, but with more data points. The new policy
is less restrictive and the drone is able to continue following
the prescribed flight path. According to the authors, after that
point, the drone never switches to the safety controller due to
uncertainty again.

Experiment 3, Gone with the Wind: In this experiment, the
drone is initialized similarly to experiment 2. The flight path is
the same, except this time the authors introduced a fan to create
unmodeled disturbance. The purpose of this experiment is to
test the effectiveness of their online validation and demonstrate
the methods ability to respond to outside disturbances. As
shown in 5, the drone with the online validation is able
to continue flying despite the disturbance, while the drone
without the online validation crashes to the floor twice. These
results show that the system helps maintain safety conditions
even when unmodeled interference is introduced.

B. Issues with this Method

This method successfully combines both techniques for
great results. The method is very effective and proven to work
on real systems, not just simulations. However, the method
is computationally heavy, requiring an online component to
handle a large part of the computations. The authors do
not address what happens if the system loses connection to

the online portion, meaning there could be a hole in their
safety guarantee. They do mention work on reducing the
computations and doing them on-board, but also note that it
does not work as well. Therefore, while this is effective and
very promising, it requires further work to improve its safety
guarantees.

V. FUTURE WORK AND CONCLUSIONS

While these methods and techniques worked well in sim-
ulation or a large empty room, the safety is only guaranteed
for one agent. Additionally, the learning only applies to one
agent. However, if these techniques and methods are to be
implemented on autonomous cars or UAV’s, the agents will
have to interact with similar systems, learn in groups, and
interact with humans. None of these methods account for that.
Therefore, we propose that future work should try implement-
ing these techniques and similar ones in a distributed setting3,
where agents are able to learn together and from each other.
There are several open questions considered in future work
including:

• Should there be one agent that handles the learning for
all of the systems involved, or should they each learn on
their own?

• If there is one learner, how does it generalize the policies
to account for slight variations in the system dynamics
of the involved systems?

• How can we transmit learned policies from one agent to
another to share learning experiences, and is that a good
idea?

Answering questions like these and more could lead to
learning systems that interact with each other and inform
others of how to respond in situations they have never en-
countered, thus reducing uncertainty and increasing safety.
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