
A Brief Look into How Safe Reinforcement Learning Methods
Compare to “Unsafe” Methods

Nathaniel Hamilton
Vanderbilt University
Nashville, Tennessee

nathaniel.p.hamilton@vanderbilt.edu

ABSTRACT
Reinforcement Learning (RL) has become an increasingly popular
subject as the success of these algorithms and methods grows. To
combat the safety concerns surround the freedom given RL agents
while training, there has been an increase in work concerning Safe
Reinforcement Learning. However, these new and safe methods
have been held to less scrutiny than their unsafe peers. In this work
we apply scrutiny and formal verification techniques to a new safe
RL method as well as the original "unsafe" algorithm it is built on.

KEYWORDS
Deep Reinforcement Learning, Safe Reinforcement Learning, For-
mal Verification, Neural Network Verification

ACM Reference Format:
Nathaniel Hamilton. 2020. A Brief Look into How Safe Reinforcement
Learning Methods Compare to “Unsafe” Methods. In Proceedings of Some
Conference (Conference ’21). ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Deep Reinforcement Learning (RL) has enabled Neural Network
controllers to achieve state-of-the-art performance on many high-
dimensional control tasks [Haarnoja et al. 2018; Lillicrap et al. 2015;
Mania et al. 2018; Schulman et al. 2015, 2017]. However, RL allows
agents to learn via trial and error, exploring any behavior during the
learning process. In many realistic domains, this level of freedom
is unacceptable. Consider the example of an industrial robot arm
learning to place objects in a factory. Some behaviors could cause
it to damage itself, the plant, or nearby workers. As a result, the
realm of Safe Reinforcement Learning (SRL) is extremely important.
However, little to no work has been done to formally verify these
SRL methods and prove they actually create safe policies.

In this work we reevaluate and compare a recent safe reinforce-
ment learning method that showed exceptionally promising results
using compensating and guiding control barrier functions (CBF),
[Cheng et al. 2019] against the vanilla RL algorithm it was built

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference ’21, April 15, 2021, City, Earth
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

upon. We modify their provided implementation1 to test them ac-
cording to some of the standards written about in [Henderson et al.
2018]. These standards are more rigorous and help provide a better
understanding of how well the algorithms and methods actually
perform by stripping away some of the practices that have led to
results’ misrepresentation. We focus only on the DDPG implemen-
tations provided as they showed more promising results.

Additionally, we use a state-of-the-art neural network verifying
tool to verify whether or not the learned policy networks of each
method uphold the safety properties they were trained to uphold.
By comparing both the performance metrics and the formal safety
of the different methods, we can better understand how training
with and without knowledge of the safety constraints impacts the
learning process.

2 OVERVIEW/BACKGROUND
The goal of RL is to learn a good strategy for an agent to complete a
task from experimental trials that have their levels of success repre-
sented as a reward. With the optimal strategy, the agent is capable
of actively adapting to the environment to maximize future rewards.
This is done by an agent choosing actions in an environment. The
mapping of states or observations, 𝑠 , to an action, 𝑎, is referred to
as a learned policy, 𝑎 = 𝜋 (𝑠). The policy is most often optimized
to maximize the reward according to the state-action value, also
referred to as the Q-value. The mapping of the Q-value to the state-
action pairs is the Q-function, 𝑄𝜋 (𝑠, 𝑎) = 𝐸𝜋 [𝐺𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎].

2.1 Deep Deterministic Policy Gradient
Deep Deterministic Policy Gradient (DDPG) is a popular and well
studied deep reinforcement learning algorithm that was originally
written about in [Lillicrap et al. 2015]. Since it’s original publication,
it has been used as a reference and baseline for the development of
more complicated algorithms such as Twin DDPG (TD3) [Fujimoto
et al. 2018] and Soft Actor-Critic (SAC) [Haarnoja et al. 2018].

DDPG is an off-policy, actor-critic method that is often referred
to as "deep Q-learning for continuous action spaces" [Achiam 2018].
The critic learns the Q-function related to the environment and the
actor is updated to maximize the expected reward according to the
critic. This is accomplished following the steps in Algorithm 12.

2.2 Control Barrier Function Guided Control
In this control architecture, presented in [Cheng et al. 2019], the
authors seek to achieve both safe and efficient learning by learning
from the deployed controller that enforces safety constraints rather
1available at https://github.com/rcheng805/RL-CBF
2For more information on DDPG, we recommend this site https://spinningup.openai.
com/en/latest/algorithms/ddpg.html

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://github.com/rcheng805/RL-CBF
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://spinningup.openai.com/en/latest/algorithms/ddpg.html

Conference ’21, April 15, 2021, City, Earth Nathaniel Hamilton

Algorithm 1: DDPG Algorithm
INITIALIZE
critic network 𝑄 (𝑠, 𝑎 |𝜃𝑄) with random weights 𝜃𝑄

actor network 𝜇 (𝑠 |𝜃𝜇) with random weights 𝜃𝜇

target networks 𝑄 ′ and 𝜇 ′ with weights 𝜃𝑄
′ ← 𝜃𝑄 ,

𝜃𝜇
′ ← 𝜃𝜇

replay buffer 𝑅

TRAIN
for episode = 1, 2, ...,𝑀 do

Initialize random process noise 𝑁
𝑠1 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 ()
for t = 1, 2, ..., 𝑇 do

𝑎𝑡 = 𝜇 (𝑠𝑡 |𝜃𝜇) + 𝑁𝑡

𝑠𝑡+1, 𝑟𝑡 = 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝑎𝑡)
Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝑅

Sample 𝐵 random transitions (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) from 𝑅

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄 ′(𝑠𝑖+1, 𝜇 ′(𝑠𝑖+1 |𝜃𝜇
′) |𝜃𝑄′)

Update critic by minimizing
𝐿 = 1

𝐵

∑
𝑖 (𝑦𝑖 . −𝑄 (𝑠𝑖 , 𝑎𝑖 |𝜃𝑄))2

Update actor using the sampled policy gradient:
∇𝜃𝜇 𝐽 ≈
1
𝐵

∑
𝑖 ∇𝑎𝑄 (𝑠, 𝑎 |𝜃𝑄) |𝑠=𝑠𝑖 ,𝑎=𝜇 (𝑠𝑖)∇𝜃𝜇 𝜇 (𝑠 |𝜃𝜇) |𝑠𝑖

Update the target networks:
𝜃𝑄
′ ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃𝜇
′ ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

end
end

Figure 1: These images from [Cheng et al. 2019] show (a)
the control structure of the CBF guiding controller and (b)
how the use of CBF controllers guides the policy exploration
within the set of safe policies.

than learning only from the RL controller. The authors utilize a
control barrier function (CBF) control technique to enforce the safety.

The control barrier function controller is a natural tool for enforc-
ing safety throughout the learning process [Cheng et al. 2019]. It
utilizes a Lyapunov-like argument to provide a sufficient condition
for ensuring forward invariance of the safe set under controlled
dynamics. While the approach can be generalized to more barrier
functions, this work focuses on affine barrier functions of the form
ℎ = 𝑝𝑇 𝑠 + 𝑞, (𝑝 ∈ R𝑛, 𝑞 ∈ R). With this restriction, the safe set has
to be comprised of polytopes.

Using an estimate of the system’s dynamics from a Gaussian
Process estimator, a quadratic problem is solved at each step to com-
pute a minimal control input that maintains safety. By remembering
every previously deployed CBF controller, the agent is "guided"
into the set of safe policies and forced to explore only within that
domain like shown in Figure 1.b.

The architecture and interaction of the CBF controllers is shown
in Figure 1.a. This controller combines the outputs of the RL con-
troller and all previous iterations of the CBF controller in the fol-
lowing manner:

𝑢𝑘 (𝑠) = 𝑢𝑅𝐿
𝜃𝑘
(𝑠) +

𝑘−1∑
𝑗=0

𝑢𝐶𝐵𝐹𝑗 (𝑠,𝑢𝑅𝐿
𝜃0

, ..., 𝑢𝑅𝐿
𝜃 𝑗−1
)

+ 𝑢𝐶𝐵𝐹
𝑘
(𝑠,𝑢𝑅𝐿

𝜃𝑘
+
𝑘−1∑
𝑗=0

𝑢𝐶𝐵𝐹𝑗) (1)

Since the process of storing and adding together all previous
CBF controllers would be costly and require a large computation
time, the authors instead estimate the value by training another
neural network.

The authors applied this method to both TRPO and DDPG, but,
for the purpose of this paper, we will only focus on the DDPG
implementation explained in Algorithm 2 based on their provided
implementation.

2.3 Plant Model: Inverted Pendulum
In this work, we focus on OpenAI’s 𝑃𝑒𝑛𝑑𝑢𝑙𝑢𝑚 − 𝑣03 environment
[Brockman et al. 2016]. It was one of the two environments tested
in [Cheng et al. 2019] and is a well studied RL control problem with
easily defined safety properties. The goal of the agent is to keep
the frictionless pendulum upright and stationary.

The interior plant model changes according to the discrete dy-
namics

¤𝜃𝑘+1 = ¤𝜃𝑘 + (
−3𝑔
2𝑙
∗ sin(𝜃𝑘 + 𝜋) +

3𝑢𝑘
𝑚𝑙2
) ∗ Δ𝑡

𝜃𝑘+1 = 𝜃𝑘 + ¤𝜃𝑘+1
where 𝑔 = 10, 𝑙 = 1,𝑚 = 1, Δ𝑡 = 0.05, and 𝑢𝑘 is the control from
the neural network in the range [−2, 2]. Additionally, within the
OpenAI environment, ¤𝜃 is clipped within the range [−8, 8], and 𝜃
is aliased within [−𝜋, 𝜋] radians. 𝜃 is measured from upright and
increases as the pendulum moves clockwise. These values, 𝜃 and ¤𝜃
are then used to determine the input values for the neural network

3The code implementation of this environment can be found at https://github.com/
openai/gym/blob/master/gym/envs/classic_control/pendulum.py

https://github.com/openai/gym/blob/master/gym/envs/classic_control/pendulum.py
https://github.com/openai/gym/blob/master/gym/envs/classic_control/pendulum.py

A Brief Look into How Safe Reinforcement Learning Methods Compare to “Unsafe” Methods Conference ’21, April 15, 2021, City, Earth

Algorithm 2: DDPG-CBF Guided Control Algorithm
INITIALIZE
critic network 𝑄 (𝑠, 𝑎 |𝜃𝑄) with random weights 𝜃𝑄

actor network 𝜇 (𝑠 |𝜃𝜇) with random weights 𝜃𝜇

target networks 𝑄 ′ and 𝜇 ′ with weights 𝜃𝑄
′ ← 𝜃𝑄 ,

𝜃𝜇
′ ← 𝜃𝜇

replay buffer 𝑅
Gaussian Process dynamics model 𝐺𝑃

TRAIN
for episode = 1, 2, ...,𝑀 do

for k = 1, ..., 5 do
Initialize random process noise 𝑁
𝑠1 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 ()
while 𝑠1 is unsafe do

𝑠1 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 ()
end
for t = 1, 2, ..., 𝑇 do

𝑢𝑅𝐿 = 𝜇 (𝑠𝑡 |𝜃𝜇) + 𝑁𝑡

𝑢𝑏𝑎𝑟 = 𝑏𝑎𝑟𝑟𝑖𝑒𝑟_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 (𝑠)
𝑢𝐶𝐵𝐹 = 𝑠𝑎𝑓 𝑒𝑡𝑦_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 (𝐺𝑃, 𝑠𝑡 , 𝑢𝑅𝐿 + 𝑢𝑏𝑎𝑟)
𝑎𝑡 = 𝑢𝑅𝐿 + 𝑢𝑏𝑎𝑟 + 𝑢𝐶𝐵𝐹 𝑠𝑡+1, 𝑟𝑡 = 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝑎𝑡)
Store transition in 𝑅

Sample 𝐵 random transitions from 𝑅

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄 ′(𝑠𝑖+1, 𝜇 ′(𝑠𝑖+1 |𝜃𝜇
′) |𝜃𝑄′)

Update critic by minimizing 𝐿
Update actor using the sampled policy gradient
Update the target networks

end
Update 𝐺𝑃 using the episode’s transitions

end
Train 𝑏𝑎𝑟𝑟𝑖𝑒𝑟_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 using recorded values

end

controller. The input state is

𝑠 = [cos(𝜃), sin(𝜃), ¤𝜃]𝑇

The environment also comes with a built-in reward function,
which we used to train all of the agents.

𝑟 (𝑘) = −(𝜃2
𝑘
+ 0.1 ¤𝜃2

𝑘
+ 0.001𝑢2

𝑘
)

To add a safety aspect to this environment, we decided that the
state would only be considered safe if 𝜃 was in the range [−15◦, 15◦].
This safety range was encoded into the CBF controller and used
during evaluation to determine if a simulation was safe.

2.4 Neural Network Verifier
The Matlab toolbox for Neural Network Verification (NNV)4 [Tran
et al. 2020] uses reachability methods to compute exact and over-
approximate reachability sets. For the purpose of this work, we
utilize the part of their tool focused on Neural Network Control
Systems (NNCS) similar to the work done in [Tran et al. 2019].

4Code available at https://github.com/verivital/nnv

Due to the nonlinearity of the models being evaluated, the over-
approximations in the reach set grow exponentially, so we had to
define a small initial set about the upright position. This initial set
is used throughout the training explained in the next section.

𝑠 =

[
cos(15◦) , 1.0

][
sin(−15◦) , sin(15◦)

][
−0.01 , 0.01

] , (2)

3 EXPERIMENT SETUP
In this work, we look at three different ways of training an agent
within the 𝑃𝑒𝑛𝑑𝑢𝑙𝑢𝑚 − 𝑣0 environment and show results for four
evaluations. Each evaluation is performed across three random
seeds5. The first two random seeds were selected at random, the
third is the random seed used in the original work [Cheng et al.
2019]. We will compare sample-complexity results, the traditional
way of showing howwell an algorithm performs in an environment,
and the final trained model will be evaluated 100 times in order
to get a more general idea of how well we can expect the learned
model to perform if it’s deployed. Each episode evaluation halts the
training and uses the deterministic output of the learned policy for
each step. Each evaluation episode starts the agent from within the
initial set (Eq. 2) in order to make the evaluations more consistent.
The different evaluation traces are explained with more detail below.

3.1 DDPG
The first evaluation, DDPG, shows how the original DDPG imple-
mentation performs with no modifications and no changes made
to the environment. When the environment is reset, the angle is
randomly selected from a uniform distribution from [−𝜋, 𝜋] radians
and the velocity from [−1, 1].

3.2 DDPG-C
The second evaluation, DDPG-C, is a constrained version of the
DDPG algorithm. Each training episode is started within the initial
set (Eq. 2). This training method was included to see the effect of
starting the training episode exclusively within the safe region.
The following methods make sure to always start training episodes
within the safe region, which could have been an underlying reason
for their reported success.

3.3 CBF-N and CBF
Both of these evaluations, CBF-N and CBF, are made using the same
trained model. The model is trained using the algorithm outlined in
Section 2.2. Each training episode is started within the initial set (Eq.
2) and control barrier functions are configured with the safe region
trying to keep the pendulum within [−15◦, 15◦]. The difference in
the evaluations is CBF-N is evaluated without the learned barrier
estimator and safety barrier while CBF is evaluated with both. This
comparison is included to observe how the compensator and safety
barrier impact the performance.

5The work done in [Henderson et al. 2018] shows that an algorithm must be evaluated
using multiple random seeds in order to prove a trend since the performance is often
linked directly to the random seed.

https://github.com/verivital/nnv

Conference ’21, April 15, 2021, City, Earth Nathaniel Hamilton

Figure 2: An estimate of the expected reward if the pol-
icy network were deployed after training for that many
episodes.

3.4 Reachability Evaluation
We used the best performing models of each experiment to com-
pute the reachability analysis. If the best performing model is not
verifiably safe, then it is reasonable to believe the others are not as
well. As of yet, we cannot evaluate the reachability set of the CBF
models. The use of two neural networks to determine the action
cannot be replicated in NNV yet.

We converted the final actor model of the selected experiments
into a Matlab format used by NNV. These final models were then an-
alyzed alongside the plant model to compute the overapproximate
reachability sets after 10 simulated steps using the NNCS reach
function. Due to some of the nonlinearities in the plant model, the
overapproximation quickly explodes after a few steps, so we paired
the output with traces of simulated experiments to observe whether
or not the reach-sets are reasonable.

4 RESULTS
The following results were collected using the code provided at
https://github.com/nphamilton/mlv_2020_project with repeatabil-
ity instructions provided in the readme.

4.1 Training Results
All of the sample complexity results are shown in Figure 2. This
shows the expected reward after each episode of training. The solid
line shows the average reward between the three random seeds. The
shaded region is the first standard deviation. These results suggest
that the CBF algorithm is highly dependent on being deployed
with the barrier estimator and safety barrier. Without these, the
performance suffers heavily having the worst reported performance
with a large variance. The results are discussed more in Section 5.

Table 1: Final Model Evaluated on 100 Runs

Method Expected Reward Percent Safe Runs

DDPG_8 -0.487 ± 0.025 100%
DDPG_1964 -0.504 ± 0.019 100%
DDPG_1754 -2.952 ± 0.040 100%
DDPG-C_8 -4.666 ± 0.046 100%
DDPG-C_1964 -0.534 ± 0.011 100%
DDPG-C_1754 -0.647 ± 1.414 100%
CBF-N_8 -1695.5 ± 293.5 0%
CBF-N_1964 -1236.5 ± 18.18 0%
CBF-N_1754 -2.180 ± 0.268 100%
CBF_8 -5.402 ± 0.505 100%
CBF_1964 -87.00 ± 56.19 0%
CBF_1754 -1.417 ± 0.416 100%

Figure 3: Reachability analysis for the DDPG_8model repre-
sented by boxes representing cos(𝜃) vs sin(𝜃).

4.2 Final Model Evaluation
We evaluated the final learned policy models 100 times to form
an estimate of how the systems would respond if deployed in a
real system. The results shown in Table 1 suggest that the CBF
method does not always produce safe policies, even with the barrier
estimator and safety barrier. Both DDPG and DDPG-C produced
consistently safe results. The best performing method was DDPG,
having the highest expected reward. Additionally, DDPG had the
highest average performance across all three random seeds. The
worst performing method was CBF-N.

4.3 Reachability Results
We performed the reachability analysis on all three selected models
and all of them failed to stay within the safe region for the eval-
uated 10 steps, i.e. 0.5 seconds. Additionally, the simulated traces
also failed to remain within the safe regions, supporting the unsafe
finding. However, due to the overapproximations made in the veri-
fication process and the inability to put a max speed in the plant

https://github.com/nphamilton/mlv_2020_project

A Brief Look into How Safe Reinforcement Learning Methods Compare to “Unsafe” Methods Conference ’21, April 15, 2021, City, Earth

Figure 4: Comparison of learning efficiency between DDPG
with initial set constraints and the CBF-guided method.

model, we cannot definitively say that these models are unsafe.
Upon further inspection, we found that all the results were exactly
the same, which might suggest a flaw in our implementation or a
limitation in computing the reach set for such a nonlinear system.
The reachability result for DDPG is shown in Figure 3 while the
other results are included in Appendix B to save space.

In Figure 3, the horizontal axis measures the cos(𝜃) and the
vertical axis measures the sin(𝜃). The black rectangle is the initial
set and the blue boxes with black borders are the reachable sets. The
vertical and horizontal red lines mark the edges of the safe region
and the colored lines forming an arch represent 100 simulated
traces.

5 DISCUSSION
Our results did not show the same performance benefits of using the
CBF-guided methods reported in [Cheng et al. 2019]. Instead, we
found that the policy performance was highly reliant on the barrier
functions and our experiments suggest the quick convergence was
not a result of the CBF-guided method.

In Figure 4, we compare the performance of DDPG modified to
start each training episode with the same restrictions used for the
CBF-guided method against the CBF-guided performance. Here we
see little to no difference in the learning speed as both methods
increase performance very quickly and start to converge. It is hard
to justify that the addition of CBFs are the cause for the increased
learning speed when simply constraining the initial set produces
the same improvement.

Furthermore, in Figure 5 we have singled out only the proposed
safe method using CBFs and the original RL method to see which
is more stable and consistent. The safe method is constantly spik-
ing does not converge to a stable value while the original method
converges and maintains a consistent value halfway through train-
ing. This suggests that there are some hidden instabilities to using
CBFs or the way they’re deployed. This is undesirable and could

Figure 5: Comparison of learning efficiency between the un-
safe and safe methods.

cause strong negative effects if deployed to a safety-critical system.
Therefore, we cannot confidently say that the CBF-guided method
is safer than using the original, DDPG algorithm.

6 FUTUREWORK AND CONCLUSIONS
This paper presents a single case where the safe method proposed
in [Cheng et al. 2019] does not produce safer results than traditional
methods, contrary towhat was reported in their work. This suggests
that other safe reinforcement learning methods may not be tested
rigorously enough to make the claim that they are safe.

Future work in this area will involve looking into more cases
where safe reinforcement learning algorithms are not safe and
possibly create more rigorous benchmark tests and standardized
evaluation. These benchmarks and evaluation standards could help
shed more light onto which methods are actually safe and can be
used in safety critical systems.

7 THINGS I LEARNED
This project has taught me some valuable lessons about goal set-
ting, code standardization, repeatablility, and the trustworthiness
of published works.
• Goal setting: I started with a large goal, implementing mul-
tiple RL algorithms, training across multiple environments,
and comparing all these different methods. Those goals were
a bit too much and they did not provide enough "wiggle
room" for when things inevitably went wrong. As a result, I
panicked and had to reformulate new ideas multiple times
to find something that was manageable within a short time
frame. I was lucky to find previous work that I was able to
rework to fit my original goal, but I need to plan better in
the future.
• Code standardization: I started work on a large body of
code for this project and used large libraries and tools in
order to collect my results. Having to read through all of

Conference ’21, April 15, 2021, City, Earth Nathaniel Hamilton

the code to figure out what is going on and how to fix the
issues I encountered was difficult when the code wasn’t well
structured. I worked these frustrations into the body of code I
developed (https://github.com/nphamilton/rl_library). Each
class and method has a rigid structure and uses abstract
classes that helps enforce their use. When I encountered
issues, this structure really helped me find the bugs and
issues.
• Repeatability: I tried to use a lot of other people’s work in
order to lighten the workload. I focused on papers that were
stamped for repeatable results. However, I kept running into
issues with dependency errors and confusing structures that
made repeating their results next to impossible. I also found a
large number of misrepresented results. It has helped solidify
my resolve to make all of my future projects easy to repeat
and as understandable as I can make them.
• Trustworthiness of published results: As we saw in the re-
sults I found in this paper, the claims of the work I used were
incorrect. This was a paper I had thought was really good. It
was accepted at a good conference and all the methods they
described made sense. It should have worked, but we found
that it didn’t. Therefore, I should be more skeptical in the
future.

REFERENCES
Joshua Achiam. 2018. Spinning Up in Deep Reinforcement Learning. (2018).
Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained pol-

icy optimization. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, 22–31.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. arXiv:arXiv:1606.01540

Richard Cheng, Gábor Orosz, Richard MMurray, and Joel W Burdick. 2019. End-to-end
safe reinforcement learning through barrier functions for safety-critical continuous
control tasks. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
3387–3395.

Scott Fujimoto, Herke Van Hoof, and David Meger. 2018. Addressing function approx-
imation error in actor-critic methods. arXiv preprint arXiv:1802.09477 (2018).

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor. arXiv preprint arXiv:1801.01290 (2018).

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. 2018. Deep reinforcement learning that matters. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

Horia Mania, Aurelia Guy, and Benjamin Recht. 2018. Simple random search of static
linear policies is competitive for reinforcement learning. In Advances in Neural
Information Processing Systems. 1800–1809.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. 2015.
Trust region policy optimization. In International conference on machine learning.
1889–1897.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).
arXiv:1707.06347 http://arxiv.org/abs/1707.06347

Hoang-Dung Tran, Feiyang Cai, Manzanas Lopez Diego, Patrick Musau, Taylor T
Johnson, and Xenofon Koutsoukos. 2019. Safety Verification of Cyber-Physical
Systems with Reinforcement Learning Control. ACM Transactions on Embedded
Computing Systems (TECS) 18, 5s (2019), 1–22.

Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet
Nguyen, Weiming Xiang, Stanley Bak, and Taylor T. Johnson. 2020. NNV: The
Neural Network Verification Tool for Deep Neural Networks and Learning-Enabled
Cyber-Physical Systems. In 32nd International Conference on Computer-Aided Veri-
fication (CAV).

He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan. 2019. An Inductive
Synthesis Framework for Verifiable Reinforcement Learning. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2019). Association for Computing Machinery, New York, NY, USA,

686–701. https://doi.org/10.1145/3314221.3314638

https://github.com/nphamilton/rl_library
http://arxiv.org/abs/arXiv:1606.01540
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1145/3314221.3314638

A Brief Look into How Safe Reinforcement Learning Methods Compare to “Unsafe” Methods Conference ’21, April 15, 2021, City, Earth

Appendices

A HYPERPARAMETERS
DDPG:
• Policy Network: (64, relu, 64, relu, tanh)
• Q Network (64, relu, 64, relu, linear)
• Actor LR: 0.0001
• Critic LR: 0.001
• Noise type: Ornstein-Uhlenbeck Process Noise 𝜎 = 0.3, 𝜃 =

0.15
• Soft target update: 𝜏 = 0.001
• 𝛾 = 0.99
• Critic L2 reg: 0.01
• buffer size: 106
• batch size: 𝐵 = 64
• episode length: 𝑇 = 200
• number of episodes:𝑀 = 1000

DDPG-CBF:
• Policy Network: (64, relu, 64, relu, tanh)
• Q Network (64, relu, 64, relu, linear)
• Actor LR: 0.0001
• Critic LR: 0.001
• Noise type: Ornstein-Uhlenbeck Process Noise 𝜎 = 0.3, 𝜃 =

0.15
• Soft target update: 𝜏 = 0.001
• 𝛾 = 0.99
• Critic L2 reg: 0.01
• buffer size: 106
• batch size: 𝐵 = 64
• episode length: 𝑇 = 200
• number of episodes:𝑀 = 200

B OTHER REACHABILITY RESULTS
All of the reachability results took ≈1 hour to compute on a single
core.

Figure 6: Reachability analysis for the DDPG-C_1964 model
represented by boxes representing cos(𝜃) vs sin(𝜃).

Figure 7: Reachability analysis for the CBF-N_1754 model
represented by boxes representing cos(𝜃) vs sin(𝜃).

	Abstract
	1 Introduction
	2 Overview/Background
	2.1 Deep Deterministic Policy Gradient
	2.2 Control Barrier Function Guided Control
	2.3 Plant Model: Inverted Pendulum
	2.4 Neural Network Verifier

	3 Experiment Setup
	3.1 DDPG
	3.2 DDPG-C
	3.3 CBF-N and CBF
	3.4 Reachability Evaluation

	4 Results
	4.1 Training Results
	4.2 Final Model Evaluation
	4.3 Reachability Results

	5 Discussion
	6 Future Work and Conclusions
	7 Things I Learned
	References
	A Hyperparameters
	B Other Reachability Results

